Course Syllabus

SIPS 521

Academic Year 2024

Department of Physiology

Faculty of Medicine Siriraj Hospital, Mahidol University

Course ID and name:	SIPS521: Physiological Biochemistry						
Course coordinator:	Assoc. Prof. Sorachai Srisuma, MD, PhD						
Instructors:	Assoc. Prof. Suwattanee Kooptiwut, MD, PhD						
	Assist. Prof. Sompol Tapechum, MD, PhD						
	Assoc. Prof. Sorachai Srisuma, MD, PhD						
	Assoc. Prof. Panapat Uawithya, MD, PhD						
	Assoc. Prof. Reawika Chaikomin, MD, PhD						
	Assoc. Prof. Narawut Pakaprot, MD, PhD						
	Assoc. Prof. Chantacha Sitticharoon, MD, PhD						
	Instr. Thaksaon Kittipassorn, MD, PhD						
	Instr. Rujapope Sutiwisesak, MD, PhD						
	Instr. Patamat Nitiwaranggoon, MD, PhD						
	Instr. Thanus Teeratitayang-gool, MD, Diploma Thai Board of						
	Anesthesiology						
Credits:	2 (2-0-4) (lecture – laboratory – self-study)						
Curriculum:	Masters of Science Program in Medical Physiology						
Course type:	☐ Core ☐ Required ☑ Electives						
Semester offering:	2/2024						
Prerequisite:	None						

Course Description:

Date of Latest Revision:

Core biochemistry: structure and mechanism of enzymes; structures and metabolism of biological molecules with physiological significance including lipid, lipoprotein, carbohydrate, protein, amino acid, nucleic acid; introduction to bioenergetics; intercellular and intracellular signaling; structures of chromosome and gene; regulation of gene expression. Applied biochemistry in medical physiology: omic studies; blood, lymph and circulating blood cells,

January 26, 2025

hemostasis; neurochemistry, neuroendocrine regulation of food intake and body mass; liver functions; integration of metabolism, effect of gut microbial metabolites on human physiology; pathogenesis of obesity, diabetes, dyslipidemia and the metabolic syndrome

Course-level Learning Outcomes (CLOs)

Upon completion of this course, students are able to:

- 1. Describe the biochemical principles on body function and regulation.
- 2. Explain biochemical changes and/or adaptations of common clinical problems due to stress or disturbance of organ systems.
- 3. Evaluate experimental/laboratory data to determine the biochemical changes of common clinical problems.
- 4. Participate in discussion of biochemical changes of common clinical problems in endocrine system, cardiovascular system, hepatobiliary system and nervous system.

Constructive Alignment of CLOs and Program's ELOs

CLOs	ELO1	ELO2	ELO3	ELO4
1	R			
2	R			
3		R		
4				R

Remarks: Show the level of the course management with the symbols I, R, P, and M.

Program's Expected Learning Outcomes

- 1. Demonstrate the current medical physiological knowledge for common clinical application.
- 2. Evaluate the scientific research and major research developments.
- 3. Perform medical physiology research with a technique in an ethical way to test an idea or hypothesis in an area of interest.
- 4. Communicate knowledge and ideas of medical physiological research clearly to peers and the scientific community at national level.

Course Schedule and teaching/assessment plan

No.	Topic	Hours			Teaching &	Assessment		
		Lecture	Laboratory	Self Study	CLOs	learning	(in-class)	Lecturers
						strategy		
1	Introduction, course objectives	0.5	-	1	all	lecture	-	Dr.Sorachai
2	Amino acid structure, classification and	1	-	2	1	lecture	post-learning	Dr.Panapat
	physiological roles						exercise	
3	Hemoglobin and myoglobin: structural properties,	0.5	-	1	1	lecture	post-learning	Dr.Sorachai
	and physiological roles						exercise	
4	Problem-solving: Abnormalities arising from amino	1	-	2	2,4	discussion	performance by	Dr.Panapat
	acid structure or protein structural defects						rubric	
5	Enzyme structure, enzyme mechanisms, kinetics,	1	-	2	1	lecture	post-learning	Dr.Panapat
	allosteric regulation and coenzymes 1						exercise	
6	Enzyme structure, enzyme mechanisms, kinetics,	1	-	2	1	lecture	post-learning	Dr.Panapat
	allosteric regulation and coenzymes 2						exercise	
7	Problem-solving: Enzyme kinetics in clinical	1	-	2	2,3,4	discussion	performance by	Dr.Panapat
	scenarios						rubric	
8	Molecular Basis of Physiological Processes:	1.25	-	2.5	1	lecture	post-learning	Dr.Sorachai
	DNA/RNA, Chromosomes, and Protein Synthesis						exercise	
9	KSA: Mechanisms of gene regulation: transcription	2	-	4	2,3,4	discussion	performance by	Dr.Rujapope
	factors, epigenetics, microRNAs						rubric	

10	Omics in physiology	0.5	-	1	1,2	lecture	post-learning	Dr.Rujapope
11	Receptor and intracellular signalings	1	-	2	1,2	lecture	exercise post-learning exercise	Dr.Suwattanee
12	Intracellular signalings 2	1	-	2	1,2	lecture	post-learning exercise	Dr.Sompol
13	Glycolysis, gluconeogenesis, glycogen metabolism, pentose phosphate pathway and their regulation 1	1	-	2	1,2	lecture	post-learning exercise	Dr.Rujapope
14	Glycolysis, gluconeogenesis, glycogen metabolism, pentose phosphate pathway and their regulation 2	1	-	2	1,2	lecture	post-learning exercise	Dr.Rujapope
15	Oxidative phosphorylation	1	-	2	1	lecture	post-learning exercise	Dr.Thaksaon
16	Fatty acid metabolism, lipogenesis, ketogenesis and lipoprotein transport 1	1	-	2	1	lecture	post-learning exercise	Dr.Suwattanee
17	Fatty acid metabolism, lipogenesis, ketogenesis and lipoprotein transport 2	1	-	2	1	lecture	post-learning exercise	Dr.Suwattanee
18	Amino acid metabolism, urea cycle, nitrogen balance, protein turnover and physiological regulation	1	-	2	1,2	lecture	post-learning exercise	Dr.Sorachai
19	Energy metabolism: Energy expenditure measurement	1	-	2	2,3	lecture	post-learning exercise	Dr.Sorachai
20	KSA: Energy metabolism in exercise, fed state and fasting	1	-	2	2,4	discussion	performance by rubric	Dr.Chantacha
21	KSA: Insulin signaling and role of carbohydrate metabolism in diabetes and obesity	1	-	2	2,3,4	discussion	performance by rubric	Dr.Suwattanee

	Total hours of the study	31.25		62.50				
32	Hemostasis and regulation	1	-	2	1,2	lecture	post-learning exercise	Dr.Thanus
31	Blood, lymph, blood cell metabolism and function	1	-	2	1,2	lecture	post-learning exercise	Dr.Thaksaon
30	KSA: Neurochemical disruptions in neurological disorders	1	-	2	2,4	discussion	performance by rubric	Dr.Narawut
29	Neuroendocrine regulation of food intake, energy balance and body weight	1	-	2	1,2	lecture	post-learning exercise	Dr.Chantacha
28	Neurochemistry	1	1	2	1,2	lecture	post-learning exercise	Dr.Narawut
27	KSA: Biochemistry of prebiotics, probiotics and gut health and roles in metabolic syndrome	1	-	2	2,3,4	discussion	performance by rubric	Dr.Reawika, Dr.Patamat
26	Role of gut microbiota in health and disease	1	-	2	1,2	lecture	post-learning exercise	Dr.Reawika, Dr.Patamat
25	KSA: Liver function test interpretation and metabolic dysfunction-associated steatohepatitis	1	-	2	2,3,4	discussion	performance by rubric	Dr.Patamat
24	Liver function test: Biochemical markers for hepatic health	0.5	-	1	2,3	lecture	post-learning exercise	Dr.Patamat
23	Hepatic metabolism: Detoxification, bile production, and systemic metabolic integration	1	-	2	1,2	lecture	post-learning exercise	Dr.Reawika
22	KSA: Pathogenesis of dyslipidemia and metabolic syndrome	1	-	2	2,3,4	discussion	performance by rubric	Dr.Patamat

^{*} KSA – knowledge-synthesizing activities

Course Assignments

- In-class post-learning exercise, 22 lectures
- Participation in knowledge-synthesizing activities, assessed with a rubric, conducted eight times

Assessment Criteria

- Each CLO (Course Learning Outcome) is considered passed if the score is at least 50%.
- Written examinations are conducted twice to assess CLO1, CLO2, and CLO3.
- CLO4 is assessed through participation in knowledge-synthesizing activities, which are conducted nine times and evaluated using a rubric.

GRADE DISTRIBUTION

70% Summative examination (twice)

30% Performance in discussion classes (9 times)

	4	3	2	1	0
How well does the student	Frequently and	Voluntarily	Responses only after	Rarely, reluctantly	Never
participate in class by	voluntarily (*Does not		being		
presenting data/asking	prevent others		questioned or named		
questions/offering ideas?	from answering)				
(Frequency of contributions)					
How good is the quality of	Demonstrates	Mostly relevant,	Somewhat relevant,	Not relevant,	Lacks understanding of
student's contributions?	comprehensive	reflecting	reflecting	reflecting	knowledge or
(Quality of contributions)	knowledge and critical	understanding of	some levels of	insufficient	infrequent contributions
	thinking skills	knowledge	understanding of	understanding	
			knowledge	of knowledge	
How well does the student	Actively and	Pays attention to	Listens to	Sometimes does	Fails to pay attention;
behave during presentation?	respectfully pays	peers/instructor;	peers/instructor	not listens	displays inappropriate
(Behavior in class)	attention to	engages		to peers/instructor;	behavior in class
	peers/instructor;	most of the time		sometimes	
	full engagement	in class		displays	
	throughout			inappropriate	
	the class			behavior	

GRADE SCALE	
А	80% to 100%, with all CLOs passed (minimum 50% each)
B+	65% to <80%, with al CLOs passed (minimum 50% each)
В	50% to <65%, with all CLOs passed (minimum 50% each)
F	< 50%
	Actions Based on CLO Status:
I-1	Retake the exam and/or complete the assigned work within one
	month after the exam results are announced, if at least one
	CLO (CLO1-3) is failed.
I-2	Complete the assigned work and undergo a new evaluation
	within the next semester if all CLOs are failed.
I-3	Repeat the course when it is next offered, if all CLOs are failed.

Appeal Procedure

Students may inquire about their scores or grades directly with the course coordinator through in-person contact, telephone, or email within one week of the scores or grades being announced. Additionally, an appeal process is available through the program.